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Abstract 

The raw data obtained with a single-crystal diffrac- 
tometer are typically integrated profile and back- 
ground intensities. All linear combinations of these 
data items, and in particular net intensities and total 
backgrounds, are equivalent observations. However, 
net intensities may be negative, in apparent contradic- 
tion with basic physics. Backgrounds are generally 
discarded from the list of observations once they have 
been subtracted from the profile intensities. In a crys- 
tal structure refinement on all observations, structural 
parameters including scale, extinction and possibly 
others, as well as individual background intensities, 
are refined on the observed profile intensities and on 
the observed background intensities. It is shown that, 
in such a refinement, the structural parameters are 
determined exclusively by the net intensities as in 
traditional least squares, whereas calculated back- 
grounds depend on the difference between observed 
and calculated net intensities. Negative net intensities 
are therefore not in contradiction with physics or 
with the structural model, and should be retained 
unaltered in the data set. 

Introduction 

In a typical single-crystal diffraction experiment, the 
observations are, for the ith reflection, the integrated 
intensity QObS measured by scanning over the reflec- 

l-°bs and H °bs tion profile, and the backgrounds - i  -- ,  
measured respectively on the low-angle and high- 
angle sides of the Bragg peak. The net intensity pobs 
an6 total background intensity R °bs i aie 

p obs = QObS _ l L °bs - h ~40bs 
i " - i ~ i  . - i - - i  , 

(1) 
BObS l L °bs h H °bs 

i -i- - i ~ i  -Jr- . - i  ~ i , 

li and hi being the ratios of the time spent on the 
profile scan to the time spent on the measurement of 
the low- or high-angle background, respectively. If 

Robs Qobs is of the same order of magnitude as - i  , the 
pobs  net intensity - i  may be negative. It is still customary 

in some laboratories to discard such measurements 
pobs__  0 since the calculation of the observed or set - i  
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structure amplitude I F°bs requires the calculation of 
the square root of the intensity. French & Wilson 
(1978) have proposed a method for obtaining IF°bS[ 
based on Bayesian statistics. Hirshfeld & Rabinovich 
(1973) recommend refinement on I F°bs 2 and inclusion 
of the negative values in the refinement since these 
are perfectly valid observations and discarding them 
or altering them in any way results in a bias. However, 
objections may be raised that negative net intensities 
appear to be contradictory to the refined model since 
Fcatc 2 is always positive and the model is thus incap- 

able of reproducing the observations irrespective of 
the values of its parameters. 

The problem of negative net intensities arises since 
pobs is not directly observed, but derived from the i 
original observations. In this paper, we propose a 
refinement on the directly observed intensities, both 
profile and background, which cannot be negative. 
It will be shown that such a refinement is equivalent 
to the scheme of Hirshfeld & Rabinovich (1973). 

Transformed observations 

In the following, vectors are assumed to be column 
vectors, line vectors are identified by the superscript 
symbol T for transposed. Let the vector o with com- 
ponents oj (1 < - j - J )  represent a set of observations. 
A linear model A v - - c = o  with N adjustable par- 
ameters un ( 1 -  n <- N)  assembled in the vector v 
relates the observations to the corresponding calcu- 
lated quantities cj assembled in the vector c. In a 
least-squares refinement, the parameters un are optim- 
ized by minimizing the weighted deviance Dw = d TWd 
where W is a general weight matrix, and d = o -  c the 
vector of deviates. For minimum-variance weights, 
the inverse S = W-1 is the variance-covariance matrix 
of the observations. The normal equations are then 

ArWAv = ATWo. (2) 

We now discuss the effect of a linear transformation 
of the observations represented by the invertible 
matrix R transforming the vectors o and c into o' = Ro 
and c '=  Rc, respectively. If the matrix S exists, it 
transforms as the variance-covariance matrix of the 
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observations oj, S' = RSR T, and the new weight matrix 
is therefore W ' =  S '-~-- (RT)-~WR -1. We adopt this 
transformation rule also for non-invertible matrices 
W where S does not exist. The model relating 
observed to calculated quantities becomes A'v--c'--- 
o', and the new design matrix is therefore A'--RA. 
Using these properties, it is easily shown that the 
normal equations and the weighted deviance are 
invariant under the transformation R; 

D'w = d'TW'd ' = dTRT(RT)-lWR-IRd 

= drWd = Dw, (3) 

A ' rW'A'  = ArWA, A'rW'o '  = ArWo. 

Therefore, all sets of quantities derived from the 
original observations by a non-singular matrix R serve 
equally well as observations. 

In practice, cases arise where R is rectangular. As 
examples we would mention the derivation of net 
counts as in (1), the calculation of mean intensities 
from a set of symmetry-equivalent reflections, and 
the use of the integrated intensity QObS rather than 
the complete profile. It can be seen that a rectangular 
transformation matrix Rrect corresponds to a 
refinement on a subset of the data. The case of the 
non-invertible Rrect may be assimilated into the treat- 
ment given in the paragraph above applicable only 
to an invertible square R in the following way. The 
rectangular Rrect is augmented to an invertible matrix 
R by adding additional (arbitrary) transformation 
equations. The observations defined by these addi- 
tional equations are then excluded from the 
refinement by setting their diagonal and off-diagonal 
weights in the transformed weight matrix W' to zero. 
The resulting matrices W~ubset and Wsubset = 

T r (R)W~ubsetR are singular. This argument shows that 
pobs  FObS 2 i or may serve as observations. 

Transformed variables 

A linear transformation of the variables represented 
by the matrix T transforming v into v"--Tv permits 
the structure of the normal-equations matrix to be 
changed. The latter transforms as a second-rank 
tensor. In terms of the new variables v", the model is 
A"v" = A'q~v = Av = c, thus A" = AT -l. The new normal- 
equations matrix and vector are therefore 

A,,rWA,, = (TT)-~[ATWA]T-~; 
(4) 

A"TWo=(TT)-I[ATWo]. 

Below, the setting-up of the normal equations is facili- 
tated by a transformation of the observations such 
that subsets of the (transformed) observations depend 
only on subsets of the variables. A change of the 
variables will be used to transform the normal- 
equations matrix into a block-diagonal one easier to 
invert. 

Background refinement 

The model relating the raw observations of a diffrac- 
tion experiment to derived parameters is 

Qcalc = pi(v,,)+liLi+hini~_QObS, (5a) 

= ~ l o b s  --ilcalc Li - - i  , (5b) 
HCalc  HOBS, i =Hi = (5c) 

where em are adjustable parameters describing the 
crystal structure, the scale factor, secondary extinc- 
tion and possibly other physical quantities. Li and Hi 
are also variable parameters, adjusted to the observa- 
tions by the restraint equations (5b and 5c). If i ranges 
from 1 to I and m from 1 to M, (5) represents a 
model with J = 3I  equations and N = 2I  + M param- 
eters. For the least-squares adjustment of the QCa~¢, 
LCalc and ]4calc  i -- i  to the corresponding observations, we 
admit non-zero off-diagonal terms of the weight 
matrix corresponding to the observed items of one 
reflection .~,o -°bs, _,t °bs and ..,H °bs whose weights are given 
by the invertible 3 x 3 matrix 

w(Q,) w(QiL,) w(QiHi)l 
W, = w(Q,Li) w(L,) w(LiH,) , 

w( QiHi) w( L,H,) w(ni)  
(6) 

s(Qi) s(QiLi) s(QiHi)l 
We,' = Si = s(QiLi) s(Li) s(LiH,) [. 

s( QiHi) s( LiHi) s( Hi) J 

Off-diagonal terms of the weight matrix correspond- 
ing to data items of different reflections are assumed 
to be zero. For minimum-variance weights, the inverse 
matrix Si is the variance-covariance matrix of the 
three data items. The weighted deviance becomes 

I 
Dw = Z dTWidi, 

i=1 

d/7" = ( QObS. --  "<lOc" ale, ~i/'°bs --  --il'calc, --iH°bs-- n c a l c )  • ( 7 )  

A suitable transformation of the raw data facilitates 
the task of compiling the normal-equations matrix 
and vector. The transformed observations we use are 
the net intensities pobs of (1), and two linear combina- 
tions of L °bs and /4 °bs • --i  symbolized respectively by 
yobs and --i7°bs chosen in such a way that the off- 
diagonal weights w(PiZi) = w(YiZi) = 0, implying that 
the correlations of Z °bs with the other types of data 
vanish; 

yobs = [ li + W( OiLi) ] LObS + [ hi_ I w( OiHi) l HOb~ 
w( Qi) J w( Qi) J ' ' 

(8a) 

zobs -K, [h is (Hi)  + lis( LiHi) - s( QiHi)]L °bs i = 

+ gi[  lis(Li) + his(Ligi) - s(QiLi) ]H  °bs , 

K~ -2= s ( L i ) s ( H i ) -  s(L,Hi). (8b) 



136 R E F I N E M E N T  ON PROFILE, BACKGROUND AND NET INTENSITIES 

This choice results in a considerable simplification of 
the algebra, yobs is related to the sum of the back- 
ground measurements and Z °bS is related to their 
difference. The variables Li and Hi are replaced by 

yobs and Y~ and Zi defined by (8) analogously to - i  
z°bL These transformations will result in a normal- 
equations matrix composed of two blocks where the 

z o b s  t Zi depend only on the --i • The weight matrix Wi 
for pobs, --,Y'°bs and --iz°bs is 

w(Pi) = w(PiYi) = w(Qi), (9a) 

w(Y~)= w(Q,)s(Pi)[s(Pi)- l /w(Q,)] -1, (9b) 

w(Zi) = [ s (P i ) -  1/w( Qi)]-', (9c) 

w(P, Zi) = w(YiZi) =0. (9d) 

The inverse of W~ is 

s(Pi) = (1, --li, -hi)Si(1, - l i ,  -hi)  r 

= s(Q,) + 12s(Li) + h2s(Hi)- 2/is(QiLi) 

(10a) 

-2his (Q,H~) + 21ihis( LiHi), 

s( Yi)= s (Z i )=-s (PiY i )=  s(Pi) -  l /w(Qi),  (10b) 

s( PiZ~) = s( Y~Zi) = O. (10c) 

The non-linear function p~l~(/jr.) is linearized in the 
usual way by retaining the first term of a Taylor 

o expansion calculated at approximate values ~,". The 
refined variables are then M increments 6,. of v,., I 
increments yi of Yi and I parameters Zi. The new 
model is thus 

M 
pca lc  = 0 p o b s ,  i Pi+ ~, pi"6"= ( l l a )  

" = 1  

ycal¢ = __~ yobs, i Y~= Y~ +y, ( l l b )  
z c a l c  : = z o b s ,  i Zi (11c) 

where Pi" = (OPi/Oum) °, pO and Y~ are calculated with 
approximate parameter values at the start of the 
refinement cycle. The Yi are introduced instead of the 
Yi because the off-diagonal weight w(PiY~)= w(Qi) 
of (9a) hardly ever vanishes. Therefore, the resulting 
normal-equations matrix possesses off-diagonal ele- 
ments correlating 6,, and Y~ (or Yi). These elements 
vanish if the variable Yi is replaced by Yl; 

M 

Y~=Yi+[w(PiYi)/w(Yi)] ~, Pi"6" 
m = l  

= yi+{1 - [ w ( Q i ) s ( P i ) ] - l } (  Pcalc-  Pi),° 

(12a) 
M ycalc _ i Y~=-[w(PiY~)/w(Y~)] 2 pi"6"+Yi ,  

m = l  

(12b) 

using (11a) and (9). The normal-equations matrix 
and vector corresponding to (11) and (12b) are easily 
compiled. Replacement of the variables Li and Hi by 
y~ and Zi results in a blocked (M+2l) -d imens iona l  

matrix and decomposes the least-squares problem (5) 
into 1 + 21 independent sets of normal equations, one 
of dimension M and 21 of dimension 1: 

M {, } 
E 6" Z Pi"Pi,/s(Pi) 

m = l  i= l  

I 
- Z , ,-.obs pO)/s(Pi), 1 , . . . ,  M ,  - -  P i n ~  l ' i  - -  rl = 

i= l  

(13a) 

y'i = { 1 - [  w(Q,)s(Pi)]- l}(p°bs-- pO) 

+( yobs_ y~), i = 1 , . . . , I ,  (13b) 

z c a l c  z o b s  i =-- i  , i = l , . . . , I .  (13c) 

Equation (13a) represents a refinement of the struc- 
tural parameters v" on the net intensities pobs with 
weights calculated by the inverse of (10a), minimum- 
variance weights being the inverse variances of pobs. 

v ca~c is obtained in From (13b), (12a) and ( l lb ) ,  - i  
pca l c  terms of - i  . Using (13c) and inverting (8), one can 

t ca~c and /4 ~alc and finally the total back- calculate - i  --i 
ground B calc is obtained from (1): 

F O b S  ~rcalc = _{ l_[w(Q,)s (p i ) ] - l } (pobs  pca l c )  
~ l  - - i  / ,  

(14) 

l o b s  / : ~ c a l c  [ s ( P i B i ) / s ( P i ) ] ( p o b s  pca l c )  , - ,  - i  , ,  ( 1 5 )  

s( PiBi) = -l~s( L , ) -  h~s( Hi ) -  21ihis( L,H,) 

+ l,s(QiLi) + his( Q, Hi). (16) 

For minimum-variance weights, s(PiBi) is the covari- 
ance of -iP°bS and B °bS. Calculating the deviance Dw 

,T  ( p o b s  _ pca lc  y o b s _  ~rcalc 7 o b s  __ 
f r o m  (7) w i t h  d i  = - i  , - - i  , - - ,  

Z~ a~¢) and Wl from (9), and introducing (13c) and 
(14), one gets 

I 
Dw = ~, [s(Pi)]-'(p°bs-p~a'~) 2. (17) 

i= l  

C o n c l u d i n g  r e m a r k s  

Equations (13a) and (17) show that the solution of 
the least-squares problem (5) is equivalent to a 
refinement on net intensities, be they positive or nega- 
tive. A clear theoretical justification is thus provided 
of the recommendation of Hirshfeld & Rabinovich 
(1973). The dubious practice of refining on [F °bS with 
reflections of negative net intensity removed or trans- 
formed is seen to be a vogue without foundation. The 
essential component of this justification is the 
refinement of all variables necessary to model the 
complete set of observations of the experiment. This 
is an important general principle even if it turns out 
that in the present case the numerical calculation may 
be simplified to the conventional treatment and that 
it is in fact unnecessary to evaluate the unknown 
background variables explicitly. There is a very close 
mathematical parallel to the refinement of heavy- 
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atom coordinates in non-centrosymmetr ic  i somorphs  
of  proteins as revealed by Bricogne (1984). From 
(13c) and (14), it is evident that (13a), (15) and (17) 
are also obta ined by using only a subset of  observa- 
tions composed  of pobs and the total backgrounds  
BObS 

i " 

The fraction of  p o b s  pcalc which is at tr ibuted to 
the background intensity according to (15) increases 
with decreasing ratio of  peak- to-background 
intensity. As expected, it reaches large values for very 
weak Bragg reflections. The covariance of  pobs and 
B °bs is normal ly  a negative quantity. Thus,  i f  p~alc~ 
pobs, then B~alcx B °bs. In the following example ,  we 
assume that the variances of the observed intensities 
are derived from Poisson statistics, s ( Q i ) = Q  °bs, 
s(Li) = _,I °bs, s (Hi)  = ..,H °bs and s ( Q i L i ) = s ( Q i H , ) =  
s(LiHi) =0 .  We also assume li = hi =2 .  In terms of  
the ratio of  integrated intensity to total background 

I lObS 4- h/4°bs~ gi = QObS/(.i_i --.-i-- i ,, one obtains 

Bobs /~calc i ----i = --[2/(gi-t- 2)]( pobs_ p c.alc). 

The fractions of  pobs_ pcalc A~ attributed to the back- 
ground are 2, 17, 67 and 100% for gi-- 100, 10, 1 and 
0, respectively. Negative net intensities imply  gi < 1. 

The model  for the background intensities that we 
have used might  be described as the independent 
background model,  in which each and every reflection 

has its own independen t  variable parameters  quan-  
t ifying both  the low-and high-angle backgrounds.  A 
large n u m b e r  of  variable parameters  results but  the 
total background  is readily est imated using (15). 
Alternatively,  the background  might be represented 
by some more elaborate model  in terms of  a few 
variable global  parameters.  There is a risk of  introduc- 
ing addi t ional  model l ing  error, but the n u m b e r  of  
variables is cons iderably  reduced. Once a suitable 
model  has been found,  it is easily in t roduced in (5) 
and the setting up of  the corresponding normal  
equations is straightforward.  However, we note that 
the structural parameters  Um and the parameters  
describing the background are correlated and should 
be refined together. We do not r ecommend  fitting the 
background intensit ies to their  observed values first 
and then subtracting the resulting calculated back- 
grounds from the integrated scan intensities to obtain 
net intensities since the errors of  such net intensit ies 
are correlated. 
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Abstract 

The application of the multislice approach of Cowley & 
Moodie [Acta Cryst. (1959), 12, 353-359] to reflection high- 
energy electron diffraction (RHEED) may suffer from edge 
effects which continuously degrade the edge of the unit cell 
and prevent stationary solutions from being obtained for 
RHEED. The reason for this is that it is difficult to simulate 
a tilted infinite plane wave for the beam geometry of 
RHEED in a finite unit cell. It is shown that this can be 
done with a simple edge-patching method. It is then possible 
to obtain an infinitely convergent stationary solution for an 
arbitrary surface in RHEED within a finite unit cell. 

The arrangement of the artificial supercell for the simulation 
of RHEED patterns (Peng & Cowley, 1986) using the 

* Present address: Department of Physics, University of Oslo, PO 
Box 1048 Blindern, 0316 Oslo 3, Norway. 

Cowley-Moodie multislice approach (Cowley & Moodie, 
1959) is similar to that used for the simulation of profile 
images in high-resolution electron microscopy (HREM). 
The unit cell is split into two parts, the first is a vacuum 
and the second contains atoms that comprise the crystal 
surface. The difference is that, for profile imaging, the 
incident plane wave is not tilted as much and illuminates 
the whole unit cell, while for the simulation of RHEED it 
is more tilted and only illuminates the vacuum part of the 
unit cell. If we have a propagator with a fixed slice thickness 
and an empty phase grating, the result of each iteration is 
simply to add a constant phase term to the initial incident 
wave function, which resulted from the convolution of the 
incident-wave function with a fixed propagation function. 
This phase term can be easily calculated either analytically 
or numerically. For the simulation of RHEED patterns, the 
phase grating in the edge area of the vacuum part of each 
unit cell is empty since the surface potential exponentially 
decays to near zero into the vacuum. Therefore, in this edge 
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